SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

نویسندگان

  • Guanying Song
  • Zhenjiang Li
  • Kaihua Li
  • Lina Zhang
  • Alan Meng
چکیده

In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Tetracomponent ZnO/SiO2/SnO2/TiO2 Composite Nanofibers by Electrospinning

[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning technique. ZnO/SiO2/ SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analys...

متن کامل

Facile Magnesium Doped Zinc Oxide ‎Nanoparticle Fabrication and ‎Characterization for Biological Benefits

   Zinc oxide (ZnO) is the most common and widely utilized nanomaterial for biological applications due to their unique characteristics, such as biocompatibility, biosafety and antimicrobial along with thermal stability and mechanical strength. Magnesium (Cu) is considered as a significant dopant for ZnO due to their almost similar ionic radii and their role in biological activitie...

متن کامل

Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work,...

متن کامل

Toward a facile synthesis of spherical sub-micron mesoporous silica: Effect of surfactant concentration

In this paper, a facile method for preparing sub-micron spherical mesoporous silica by the sol-gel process and cationic surfactant cetyltrimethylammonium bromide (CTAB) as a soft template was reported. Moreover, the effect of surfactant concentration on the specific surface area and the total pore volume was investigated. The specific surface area, pore characteristic, morphology, chemical comp...

متن کامل

Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning

The fabrication process of ceramic yttria-stabilized zirconia (YSZ) and nickel oxide nanofibers by electrospinning is reported. The preparation of hollow YSZ nanofibers and aligned nanofiber arrays is also demonstrated. The influence of the process parameters of the electrospinning process, the physicochemical properties of the spinning solutions, and the thermal treatment procedure on spinnabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017